
SWEN 262
Engineering of Software Subsystems
Composite Pattern

Network Administration
1. A network comprises network elements of several

types.
a. Computers
b. Network-attached File Systems
c. Routers
d. Subnets

i. Subnets also contain network elements, including
other subnets.

2. The administration console must display
cumulative information about the network or
individual network elements including:

a. Temperature
b. Energy consumption
c. Usage
d. Available storage
e. Status of diagnostic checks

Q: How would you go about
implementing these requirements?

Conditionals/instanceof
public double getUsage(Object element) {

 double usage = 0;

 if(element instanceof Network) {

 Network network = (Network)element;

 List<Object> elements =

 network.getNetworkElements();

 for(Object element : elements) {

 usage += getUsage(element);

 }

 } else if(element instanceof FileServer) {

 FileServer server = (FileServer)element;

 usage += server.getUsage();

 } // and so on...

 return usage;

}

Use instanceof and casting to check for
network elements that provide the data that you
are looking for, e.g. usage data (whatever that
means).

We have already discussed that a long set of
conditionals is a code smell, but using
instanceof and casting is also a code smell that
often indicates a missed opportunity for
polymorphism.

Q: What are some of the drawbacks to this
approach?

Adding new kinds of network elements would also
require breaking OCP; the conditional would need
to be modified to handle the new types.

Let’s take a look at another solution...

A Component Interface
Begin by defining an interface to represent a
component in the network. This interface will be
implemented by each of the different kinds of
network elements.

public interface NetworkElement {

 public double getTemperature();

 public double getUsage();

 public double getBandwidth();

 public double getStorage();

 public Status getStatus();

}

Next, create a concrete component for one of the
network elements, e.g. a FileServer.

public class FileServer implements NetworkElement {

 public double getTemperature() {

 // return current temperature

 }

 public double getUsage() {

 // return current usage

 }

 // and so on...

}

We call these individual concrete components leaves.
Every leaf is a component.

A Composite Element
Next, create the Network class, which by virtue of
implementing the NetworkElement interface, is a
component. It must implement all of the same
methods, and can be treated the same as any
other NetworkElement (polymorphism!).

public class Network implements NetworkElement {

 private List<NetworkElement> elements =

 new ArrayList<>();

 public void add(NetworkElement element) {

 elements.add(element);

 }

 public void remove(NetworkElement element) {

 elements.remove(element);

 }

 public double getUsage() {

 double usage = 0;

 for(NetworkElement element : elements) {

 usage += element.getUsage();

 }

 return usage;

 }

 // and so on...

}

The major difference is that Network is also a
composite of NetworkElements, and so it will
need to maintain a collection of children.

This will require methods to manage child
components.

Its NetworkElement methods may return a value,
collect information from the child components, or a
combination of the two. This will be seamlessly
transparent to the caller because the Network can
be treated like any other component.

GoF Composite Structure Diagram

Intent: Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions
of objects uniformly.

(Structural)

Network Administration Diagram

GoF Pattern Card
Name: Network Administration Subsystem GoF Pattern: Composite

Participants

Class Role in Pattern Participant’s Contribution in the context of the
application

Admin Console Client The user interface for system administrators. The UI is used to
collect and display information about network connected devices at
the network, subnet, and individual device level.

NetworkElement Component Defines the interface and operations that all network elements must
support. This includes methods for collecting temperature, usage,
bandwidth, storage, and the status of diagnostics.

FileServer Leaf Represents a network connected file server. Provides information
about the file server including available storage and the status of
diagnostics.

Computer Leaf Represents a network connected personal computer. Provides
information about temperature, usage, and diagnostics.

Router Leaf Represents a network connected router. Provides information about
temperature, available bandwidth, and status of diagnostics.

Network Composite Represents a network. A network may include any number of
subnets, each of which is represented as a network. In addition, any
elements connected to the network will be contained within. Most
operations on the network aggregate information from connected
devices.

Deviations from the standard pattern: Methods for managing children are not defined in the
component interface, and so the Network is distinct from other components.

Requirements being covered: 1. A network comprises file servers, computers, routers, and subnets that may be
nested to an arbitrary depth. 2. Information including temperature, usage, bandwidth, storage, and diagnostics can be
collected.

Sorry about the eye chart, but
this is a lot of information to
pack into one slide!

Note that each participant has at
least 2-3 sentences of
description.

Also note that each leaf is
documented separately - they
are not combined into a single
row.

In your documentation it is OK
for a card to span multiple
pages for readability.

Sequence
Diagram: Get
Temperature

Composite

There are several consequences to implementing the
composite pattern:
● Defines a class hierarchy consisting of leaves and

composites - a tree structure.
● Everything is a component! Clients can treat individual

objects (leaves) and composites exactly the same.
● Makes it easier to add new kinds of components by

implementing the correct interface.
● Can make the design overly general by forcing

dissimilar objects to implement the same high level
interface.

Things to Consider

1. How does Composite support t
he

Open/Closed Principle?

2. Why is Liskov important to

Composite?

3. Some methods don’t make se
nse

for all components (e.g. stora
ge

on a router?). What should you

do?

4. How should methods to manage

children be handled?

5. Aggregation vs. Composition?

